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Unsteady flow due to an oscillating sphere with a velocity U, cos wt' ,  in which U,, and 
w are the amplitude and frequency of the oscillation and t' is time, is investigated at 
finite Reynolds number. The methods used are: (i) Fourier mode expansion in the 
frequency domain ; (ii) a time-dependent finite difference technique in the time domain ; 
and (iii) a matched asymptotic expansion for high-frequency oscillation. The flow fields 
of the steady streaming component, the second and third harmonic components are 
obtained with the fundamental component. The dependence of the unsteady drag on 
( r )  is examined at small and finite Reynolds numbers. For large Stokes number, 
e = (wa2/2v); g 1, in which a is the radius of the sphere and u is the kinematic viscosity, 
the numerical result for the unsteady drag agrees well with the high-frequency 
asymptotic solution; and the Stokes (1851) solution is valid for finite Re at t' % 1. 
For small Strouhal number, St = wa/U,  < 1, the imaginary component of the 
unsteady drag (Scaled by 6nU,,pfva, in which ,of is the fluid density) behaves as 
D,, - (h, St log St - 12, St), m = 1,3,5, . . . . This is in direct contrast to an earlier result 
obtained for an unsteady flow over a stationary sphere with a small-amplitude 
oscillation in the free-stream velocity (hereinafter referred to as the SA case) in which 
D,, - -h, St (Mei, Lawrence & Adrian 1991). Computations for flow over a sphere 
with a free-stream velocity U,(1 -a1 +a,coswt') at Re = U02a/v  = 0.2 and St 4 1 
show that h, for the first mode varies from 0 (at a,  = 0) to around 0.5 (at a1 = 1) and 
that the SA case is a degenerated case in which the logarithmic dependence of the drag 
in St is suppressed by the strong mean uniform flow. 

The numerical results for the unsteady drag are used to examine an approximate 
particle dynamic equation proposed for spherical particles with finite Reynolds 
number. The equation includes a quasi-steady drag, an added-mass force, and a 
modified history force. The approximate expression for the history force in the time 
domain compares very well with the numerical results of the SA case for all 
frequencies; it compares favourably for the PO case for moderate and high frequencies; 
it underestimates slightly the history force for the PO case at low frequency. For a solid 
sphere settling in a stagnant liquid with zero initial velocity, the velocity history is 
computed using the proposed particle dynamic equation. The results compare very well 
with experimental data of Moorman (1955) over a large range of Reynolds numbers. 
The present particle dynamic equation at finite Re performs consistently better than 
that proposed by Odar & Hamilton (1964) both qualitatively and quantitatively for 
three different types of spatially uniform unsteady flows. 
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1. Introduction 
Particle-laden flows are widely encountered in industrial and technological 

applications, such as pneumatic conveying systems, spray injection of liquid fuel in 
combustors and cyclone separators, among others. In order to predict the particulate 
motion, an accurate particle dynamic equation is required. At small particle Reynolds 
number, based on the relative velocity between the fluid and the particle, Maxey & 
Riley’s (1983) particle dynamic equation may be adequate, 

d(u’-0’) Du’ + ,“a”ps- 
dt’ Dt‘ + $na3pf 

= F&B + F&(t’) + Fk(t’) + FiM(t’) + Fkk9(t’), (1) 

where pp, pf, v’ and u’ are the densities and velocities of the particle and the fluid, a is 
the particle radius, v is the kinematic viscosity of the fluid, g is the gravitational 
acceleration, and t’ is the dimensional time. The various terms on the right-hand side 
of ( 1 )  are as follows: FkPB is the body force (gravity minus buoyancy); Fi,(t’) is the 
Stokes drag in quasi-steady form; Fk(t’) is the Basset history force (Basset 1888) in the 
time domain, representing the memory effect on the particle motion; FLM(t’) is the 
force due to the added mass; and the last term, F;,(t’), results from the acceleration 
of the local fluid element or the stress on the sphere owing to the undisturbed fluid flow. 
If the sphere moves while the free stream is steady and uniform, Fk,(t’) is zero. Here, 
d/dt‘ refers to the time derivative on the particle trajectory and D/Dt’ = a/at’ + u .  0‘ 
refers to the acceleration evaluated on the fluid trajectory. The prime in this paper 
denotes the dimensional quantities unless otherwise stated. 

Equation (1) is valid only for a very small particle Reynolds number based on the 
relative velocity. For inviscid non-uniform flow over a sphere, Auton, Hunt & 
Prud’homme (1988) have shown that added-mass force should be expressed as 
$na3pf((Du’/Dt) - (dv’/dt’)). This correction for the added-mass force is adopted 
hereinafter although only spatially uniform flow will be considered in specific 
examples. 

In many practical situations, a particle Reynolds number of order unity or larger is 
often encountered and equation (1) is no longer adequate. One common approach is 
to consider the quasi-steady force and simply neglect the history force and the added- 
mass force. The quasi-steady force is usually represented by using the steady state 
drag coefficient with instantaneous velocities (thus instantaneous particle Reynolds 
number), 

A commonly used expression for the drag coefficient is 

F& = ;p,nUT,(t’)lu’(t’)-u’(t)((u’(t’)-v’(t)). (2 4 

(2 b-4 
24 

- Re 
C - -$, $ = (1 +0.15 Re = Ju’-u’l2a/v, 

given in Clift, Grace & Weber (1978). More accurate forms were also compiled by Clift 
et al. (1978) and they are 

4 = l+&Re, Re < 0.01, (2 e> 



where IY = log,, Re. (2 i> 

Another approach has been to use the modifying coefficients C, and C, for the history 
force and the added-mass force proposed by Odar & Hamilton (1964, hereinafter 
referred to as OH) based on the experimentally measured unsteady drag on an 
oscillating sphere in a stagnant viscous liquid. The history force and added-mass force 
are 

t’  d(u’-0’) dr‘ Fk(t’) = c, pfa2(n,)t J-,. dr’ (t’-7‘)2’ 

where C, = 2.88 + 3.12/(AC + 1)3, (4 a> 

C, = 1.05 - 0.066/(A: + 0.12), (4 b) 

are given by Odar (1966) and 

is the acceleration parameter. This approach of representing the unsteady force has 
been used, for example, by Schoneborn (1975), Clift et al. (1978, p. 296), Tsuji, Kato 
& Tanaka (1991), Linteris, Libby & Williams (1991), among many others. Karanfilian 
& Kotas (1978) did similar experiments for 10’ < Re < lo4 and 0 < A;’ < 10.5. They 
found that C, and C, are close to the respective limiting values of 6 and 0.5, derived 
by Basset (1888) for creeping flows, for their experimental conditions. However the 
total unsteady drag does not correlate well with Re and A,. 

It was pointed out by Mei (1990) and Mei & Adrian (1992) that the modifying 
coefficients given by OH for the history force and the added-mass force may not be 
physically correct because: (i) their expression for the history force has the same 
integration kernel that is based on the creeping flow approximation and is not 
uniformly valid at non-zero Re; and (ii) their experiments were conducted only for 
several discrete frequencies, which are relatively high and do not cover the entire 
frequency domain, and the dependence of the unsteady drag on frequency was not 
investigated. 

In the numerical study of the SA case (Mei et al. 1991, hereinafter referred to as 
MLA), dependence of the unsteady drag &(o) and FL,(w), which are the Fourier 
coefficients of Fk(t’) and FLM(t’), on w and Re was investigated over a large range of 
w .  It was found that at low frequency FA(w)  x w ,  while at high frequency F;(w) x wt 
as predicted by Stokes (1851) for unsteady creeping flow over a sphere. The added- 
mass force in the high-frequency limit was found to be the same as in the cases of 
potential flow and creeping flow; no modification is needed for FLM(t’) at low and 
moderate Re. For a sphere moving with velocity zi’ and experiencing a large mean free- 
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stream velocity U’( + v’) with a small unsteady fluctuations ui(t’) + U‘, Mei & Adrian 
(1992) obtained the following approximation for the history force in the time domain, 

t’ d(u; - v‘) 
F;I( t’) = 6zpf vu K( t’ - 7’) d7’ s,; d7‘ 

where 
avf &(Re) (7) 

f,(Re) = 0.75+0.105 Re; Re = U‘2a/v. (8) 
This approximation was based on : (i) the numerical results of the SA case at finite Re 
over a wide range of frequencies; (ii) the asymptotic results at small Re and low 
frequency for the SA case that gives the long-time behaviour of the kernel K(t’-7’) ; 
(iii) Stokes solution for high-frequency oscillating flow over a sphere; (iv) the principle 
of causality (i.e. the motion of the particle can be influenced only by its previous 
history, not by its future behaviour); and (v) an interpolation for the imaginary 
component of the history force in the frequency domain. An important feature of this 
modified history force is that the integration kernel, K(t’ -77, decays as (t’ -7’)-2 at 
large time as opposed to (t’-7’)-$ derived by Basset (1888). This implies that the initial 
condition or disturbance decays much faster at large time. The total unsteady drag on 
a sphere with a unidirectional relative motion, based on the results of the SA case, is 
therefore 

t’  
v’) $( t’) + 6npf vu K( t’ - s, d(u‘ - v‘) 

7’) d7r 
d7’ 

dv’ Du‘ 
Dt’ ’ dt - 3pf %a3 + 2pf xu3 __ (9) 

where u’(t’) is the instantaneous fluid velocity that consists of a large mean and a small 
fluctuation, ~’(t’) is the velocity of the sphere with (u’I 4 (u’[, and K(t’-7’) is given by 

Strictly speaking, the kernel given by (7)-(8) is valid only for the SA case in a 
spatially uniform flow with a nearly constant Re. In recent parallel studies by Mei 
(1993) and Lawrence & Mei (1993, hereinafter referred to as LM), an unsteady flow 
over a stationary sphere owing to a step change in the free-stream velocity from U, to 
U ,  (0 < U,  6 U,) was investigated using a time-dependent finite-difference method for 
finite Re = U22a/v  over a large range of time. The history force on the sphere was 
obtained by subtracting the steady drag from the computed total drag because 
FiM(t’) = 0 for t’ > 0. For such a singular acceleration, the numerical results indicate 
that the approximate expressions (6)-(8) give the correct short-time behaviour for the 
history force and captures qualitatively its long-time behaviour, while OH’S expression 
(3a) misrepresents the history force for all time. It is also worth noting that the 
asymptotic and numerical results of LM showed that the history force decays as t’-2 
at large time which supports qualitatively the long-time behaviour of Fk(t’) given by 
(6)-(8). However, the SA case and the case involving a step change in the free-stream 
velocity are only two special cases of unsteady flows. They are quite different from the 
PO case investigated experimentally by OH. The applicability of (7)-(8) to other types 
of unsteady flows is not clear yet. 

Lovalenti & Brady (1993 a, hereinafter referred to as LB) obtained an expression for 
the hydrodynamic force on a rigid spherical particle translating with an arbitrary 

(6)-(8). 
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velocity at low Re using a reciprocal theorem. They predicted a t'-2 decay for the 
history force at large time when a sphere suddenly accelerates from U,  to U ,  if U,  = 0. 
An exponential decay was found, however, for the history force for the case with 
U, > U,  > 0. The general result was applied to the SA case (Lovalenti & Brady 19936); 
the prediction for the history force agreed very well with the numerical results of MLA 
at small Re in the frequency domain. In the time domain, they showed that the 
integration kernel decays exponentially, not algebraically, for large time. However, the 
exponential decay of the history force over a sphere with a step change in its velocity 
from a non-zero initial value, U, > 0, has been shown in LM to result from the 
linearization of the Navier-Stokes equation in the Oseen region in LB's analysis at low 
Re. If the complete nonlinear effect is taken into account, a t'-' decay is obtained 
whether or not U,  is zero. For a sphere which impulsively reverses its direction of 
motion or suddenly stops its motion, both LB and LM predicted a t'-l decay (with the 
same coefficient) for the history force. To recapitulate, the general expression for the 
unsteady force given by LB is very illuminating and useful in many cases; nevertheless, 
it is not uniformly valid for all cases even at low Re. Since we are interested in Reynolds 
numbers ranging from less than one to several hundred, further studies are warranted. 

The main purpose of this paper is to investigate the applicability of the dynamic 
equation (9), as well as the history force approximations (6)-(8), to other rectilinear 
motions with a motivation that it may be applied to more complex unsteady 
multiphase flow systems with finite particle Reynolds numbers. To this end, the 
unsteady flow due to a sphere executing a simple harmonic oscillation at finite Re is 
investigated and the unsteady drag is evaluated numerically. It may appear at first that 
the SA case and the PO case are just subsets of a more general unidirectional unsteady 
flow over a sphere. However, these two cases are different in several ways which 
warrants the present study. First, for the SA case (MLA 1991), the history force at low 
frequency is strongly affected by Re which suggests that the nonlinear convection plays 
an important role at low frequency;jt is the nonlinear convection that is responsible 
for &w) cc w,  instead of &w) cc wz, at small w.  However, the nonlinear convection 
in the SA case is dictated by the strong steady uniform flow, while that in the PO case 
involves the nonlinear interaction among different Fourier modes (see, for example, 
equation (21)). The mean flow in the PO case is induced by nonlinear streaming that 
is quite weak at both low and high frequencies. Thus, the history forces in two cases 
are expected to be different at low frequency. It turns out that the imaginary part of 
the unsteady drag, D,, that is related to the history force, in the PO case has a 
logarithmic dependence on w at small St and the SA case is only a degenerated case. 
Secondly, the flow patterns of the PO case at higher Re do not resemble that of the SA 
case in general. The flow reverses periodically and the sphere is under the influence of 
a constantly changing wake. In the experimental investigations of Temkin & Kim 
(1980) and Temkin & Mehta (1982), it was argued, based on a series of carefully 
obtained photographic measurements, that changes in the unsteady wake could affect 
the unsteady drag significantly. Thus the PO case also offers a unique opportunity to 
examine the influence of the periodically changing wake on the unsteady drag. Lastly, 
in terms of the solution procedures, a regular perturbation can be applied to the 
Navier-Stokes equation for the SA case before employing the finite-difference method. 
The resulting equation was linear which made the interpretation of the unsteady drag 
rather simple. The relevant lengthscales associated with the unsteadiness were e-l and 
Re-' at high and low frequencies, respectively, in the SA case (MLA 1991; Mei & 
Adrian 1992). The importance of the transverse lengthscale e-' and the streamwise 
lengthscale St-' as St +- 0 (see equation (39)) was suppressed by the strong convection 
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of the mean flow in the SA case; and a relatively small computational domain, 
r‘/a < 150, was adequate to capture the correct low-frequency behaviour of the drag 
for Re 3 0.1. For the PO case, no linearization is possible and the effect of nonlinear 
convection must be completely accounted for. In contrast to the SA case, c-’ and St-’ 
are dynamically important lengthscales in the transverse and streamwise directions for 
the vorticity transport when St 4 Re 4 1. Thus, a much larger domain, r’/a - O(St-’), 
is needed for the PO case in order to evaluate the low-frequency force reliably. 

The rest of this paper is organized as follows. In $2, the problem of the unsteady flow 
due to an oscillating sphere at finite Re is formulated using: (i) a 4-mode expansion in 
the frequency domain; and (ii) a time-dependent finite-difference method in the time 
domain. An asymptotic result for the unsteady drag in the high-frequency limit at finite 
Re is presented in $3 (solution details are given in the Appendix). In $4, results are 
presented and discussed. The unsteady flow fields associated with various Fourier 
modes are analysed in low- and high-frequency limits in $4.1. The accuracy of the 
numerical solutions for the unsteady drag is addressed in $4.2 by comparing with the 
experimental results of OH. In $4.3, the dependence of various unsteady drag 
components on frequency is examined; pertinent comparisons are made with the SA 
case. Some qualitative features of the oscillating flow at low and high frequencies are 
discussed. $4.4 presents detailed assessment of the proposed history force, given by 
expressions (6)-(8), for the PO and SA cases by comparing the analytical prediction 
with the numerical solution. The dynamic equation (9) is finally used to predict the 
velocity history of a settling sphere in a stagnant viscous liquid; the results are reported 
in $4.4. Excellent agreement between the prediction and the measurement of Moorman 
(1955) is obtained for a wide range of Reynolds number based on the terminal velocity 
of the sphere. To summarize, equations (6)-(8) or (55)-(56) are recommended for 
approximating the history force on a spherical particle. Equation (54) is recommended 
for computing the total unsteady drag on a sphere moving in a fluid flow for low and 
moderate values of Re. 

2. Formulation for numerical solutions 
2.1. Governing equations 

For a sphere oscillating in a stationary fluid, the problem is equivalent to a purely 
oscillating flow u’(t’) = Uocosot’ over a stationary sphere, provided that a force 
-$p,za3(du’/dt‘) is added to account for the acceleration of the fluid flow. For such 
an oscillating flow over the stationary sphere, the dimensionless unsteady Navier- 
Stokes equation in the stream function-vorticity formulation for axisymmetric 
flow in spherical coordinates (r,  8) is 

and the boundary conditions are 

@ = g = O  on 6 = 0 , q  
$ + +(eP  + eit) r2 sin2 8 as r --f a. 
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It is noted that the angle H is measured from the front stagnation point (x = - 1) if the 
free stream is from left to right. Thus (l/vsinB)(?$/?r) is the tangential velocity in the 
clockwise direction. If r9 is measured from the rear stagnation point (x = 1), the sign 
on the convection terms would be changed. Here, 

r = r’/a, t = t’o, u = u’/ U,, $ = $’/( U, a‘), 5 = Ca/U,, 9 = a 2 W 2  (13) 

are the dimensionless variables and operator; $ and t; are the stream function and the 
vorticity; and 

y = r sin 8, g = t;y. (144 b) 
The dimensionless parameters in (lo), 

Re = U, 2a/v, S t  = WU/U,, 

are the Reynolds number and the Strouhal number. The Stokes number 

c = (oa2/2v)i = ($tRe): (15c) 
will also be used later in analysing and presenting the unsteady flow fields and drag. 

2.1.1. Fourier mode expansion of the solution 
The main objective of solving equations (10)-(11) is to get a better understanding of 

the dependence of various unsteady drag components on Re and St. Thus, the method 
of Fourier mode expansion is first applied. The solution for $(t, r ,  8) is first expressed 
in terms of the Fourier coefficients in the frequency domain as 

1 “  
$(r ,  8, t )  = - C [$n(r, 8) ecint + $E(r, 6’) e+int], 

2 n=o 

where the superscript * denotes the complex conjugate. The series is then truncated at 
n = 3. Correspondingly, the function g is approximated as 

(16h) 
l 3  

g(r,  8, t )  - C [g,(r, 8) e-int +gE(r, 0) etint]. 
n=0 

The unsteady drag is consequently 

1 3  

2 n=o 
F(t)  - - C [F, ecint + 8’: e+lnt]. 

In the present case 6 = F, = 0, owing to the symmetry of the flow. Hence, 

F(t) - i[(F,, + i&) ecir + (& - i&) eit] 
+ $[(F,,  + i&) ePiat + (& - i&) eist] 

= Re (4 ecit + F, e-i3t). (176) 
Using the Fourier mode expansion, the flow fields associated with various high-order 
harmonics can be obtained and investigated easily. The apparent physical in- 
terpretation of the flow field and the unsteady drag in the frequency domain is an 
advantage of the Fourier mode expansion. This is, however, achieved at  the expense 
of accuracy because it seems that the convergence of (16) and (17) are not guaranteed. 
There are no apparent small parameters in the expansion. Physically, the above 
expansion should converge for small and moderate values of Re because the high-order 
harmonics are generated by the nonlinearity of the system. The energy associated with 
higher modes should decrease as the order of the mode increases while the first 
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harmonic, [$., + ~: eit], in ( 1  6) remains dominant because it is driven at infinity 
through the boundary condition. This method is especially useful for c - O(1) or 
larger. 

It should be mentioned here that this approach cannot be used for high-Reynolds- 
number flows, even if  many terms are kept in the expansion (16), because a high- 
Reynolds-number flow usually has its own natural frequency, which is different from 
the fundamental frequency of the free-stream oscillation and the higher harmonics. 
The results obtained using the 4-mode expansion are thus limited to the case of low and 
moderately high Reynolds numbers, say Re < 170, so that non-harmonic terms are not 
present (see Kim & Pearlstein 1990). 

2.1.2. Time-dependent solution 
The second technique employed is to solve (lo)-( 1 1) in the time domain directly 

using a finite-difference method in both time and space. Because of the periodic flow 
reversal, a second-order upwind scheme (Mei & Plotkin 1986h) in both spatial 
directions ( r ,  0) is implemented. The time derivative is discretized using a backward 
Euler scheme. The wall vorticity is evaluated using Briley’s (1 97 1) formulation. The 
solutions are obtained iteratively owing to the nonlinearity and the coupling of the 
system. The flow variables at a new timestep, say (n  + l), are estimated first by linearly 
extrapolating those at (n-  1) and n,  and are updated subsequently in each iteration 
within one timestep. The unsteady drag at every timestep is evaluated and stored. 
Fourier transformation of the unsteady drag results in various components in the 
frequency domain. The time-dependent approach is used here to: (i) provide an 
independent check on the accuracy of the Fourier mode expansion; (ii) obtain more 
accurate unsteady drag at very low frequency because it is found that the low- 
frequency drag using the Fourier mode expansion is more sensitive to the size of the 
computational domain than using the time-dependent approach, possibly owing to the 
neglect of the higher modes. More consistent results for the low-frequency drag are 
obtained using the time-dependent approach. The two approaches give nearly the same 
results for F - O( 1) or larger. The time-dependent technique is more expensive than the 
4-mode expansion when the flow fields for a series of E are to be obtained. 

2.2. Coordinate stretching and the transformed governing equations 
The numerical solution based on the Fourier mode expansion is performed in a domain 
of 1 < r < rE and 0 < B < in using 33 grid points in the @direction and 65 or 129 grid 
points in the r-direction. To obtain the time-dependent solution, 65 or 129 grid points 
are used in 0 < B < x. The following transformation is used to cluster grid points near 
the surface in both approaches, 

(1 8) r = 1 + (rE - 1){ 1 - c tan-] [(1 -x,) tan (l/c)]}. 

Here, x, is the normal coordinate in the computational domain with 0 < x, < 1. In this 
study, either c = 0.642 or c = 0.645 is used. It was found that the imaginary component 
of the unsteady drag is sensitive to rE at very small St in both 4-mode expansion and 
time-dependent approaches. To obtain consistent results for very small St, the flow 
fields for a given (Re ,S t )  are obtained for various values of rE and the imaginary 
component of the unsteady drag is obtained by extrapolating the results to rE --f co. For 
F - O(1) or larger, rE = 150 for 0.2 < Re < 10 and rE = 90 for 20 < Re ,< 100 are found 
satisfactory. See $4.3.2 for additional details. 
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2.2.1. Trcrnsjornzed equutions using Fourier niocle e.upunsion 
For the Fourier mode expansion method, computations are carried out in 

computational coordinates (xl, x2) where x2 is as defined above and .ul = 0. Equations 
(16) and (17) for g n  and $,L in (xl, x2) coordinates become 

The conditions (12a) are similarly expressed in the (x,, x,) coordinates. The conditions 
at infinity are 

$.,,+O, $, +O,  $i.9+0, and @, i i r2s in2x , ,  (25n )  

g ,  = 0, ( n  = 0, 1, 2, and 3) as r i a .  (25 b) 
The numerical implementation for $n(n  = 0, 1, 2 and 3 )  at infinity exactly follows 
( 2 5 ~ ) .  The conditions at B = 7c are replaced by the following at 0 = fx. where the 
symmetrical and anti-symmetrical conditions for the odd and even modes are enforced, 

-' 
"zm+l= cgzmil= 0, gZm = @2m = 0, (m = 0, 1) at 0 = in. (26) 

The above results from: (i) the relations between ($ ,g)  and the velocity components zii, 
and ur ;  (ii) the fact that uo(r,;n-O, t )  = -uug(r ,~7c+0,  t+iT)  and 

a0 80 

U T ( Y ,  ;n - 0, t )  = u,(r, + 0, t +;T) 
for a periodically varying flow field which has also been observed in the time-dependent 
solution; and (iii) equations (16a, b) for the decompositions of @ and g into various 
Fourier components. Here, T = 2x. is the period of the oscillation. When non-harmonic 
components are generated at higher Re, the Fourier mode expansion fails in the entire 
flow field and (26) is invalid consequently. An immediate consequence of (26) is that 
force components associated with t,hn and k2, i.e. F, and F,, are zero because the 
contributions to the drag from 0 < H 6 f7c cancels that from in 6 0 6 n. 

It can be seen from (21) that the truncation error in (19) is due to the neglect of 
nonlinear interactions involving higher harmonics. This truncation error is small for 
flows with small Re or large c. The results from the time-dependent solution indicate 
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that the dominant effect of the nonlinear interaction among different modes on the first 
harmonic g ,  has been captured by the terms appearing in (21) and terms such as u,* g3,  
u3gz, u;g4 and u4g,*. . . play a less important role. 

In the above, g ,  and y?, (n = 1, 2 and 3) are complex functions. They are expressed 
in terms of real and imaginary parts, 

This results in a set of fourteen steady, strongly coupled, linear and nonlinear 
equations. They are solved using the approach developed by Mei & Plotkin (19860) for 
steady problems with a relaxation factor that depends on Re. 

The dimensional drag on the sphere consists of the frictional drag due to shear stress 
Fi and the pressure drag F i  due to normal stress 

F’ = Fk+F;. (28) 

The relations between the dimensionless frictional drag I$ = F;/p, YU,, a and the 
dimensionless wall vorticity 5 = g / y  are 

4 = 2n { I r = ,  sin2 8d8, (29 4 c 
where aC/ar for various components is computed using the values at four grid points 
along the radial direction with a formal third-order accuracy and the integrations are 
evaluated numerically using the trapezoidal rule. The unsteady drag given by (17 b) and 
evaluated from the above is then scaled by 6npf VU, a to give 

FF(t) = F’(t)/(6npf vU, a)  = Re [D,(Re, St) ecit + D,(Re, St) e-i3t + . . .], (30) 

where D, and D, may be viewed as normalized drag coefficients. 

2.2.2. Time-dependen t solution 
For the time-dependent approach, the following equations 

g2($) = g, (32) 
are solved at every timestep in 0 < H 6 n, where u, 0, and h, are defined by (23)-(24). 
The second-order upwind scheme is applied to the convection terms in both x,- and x,- 
directions; the tridiagonal solver (Anderson, Tennehill & Fletcher 1984) is used in the 
radial direction. The initial condition for (g ,  $) is the steady solution at the same Re. 
At r = rE,  g = 0 is set. Since the velocity at infinity is cos(t), $ at r = rE is specified as 
$(r = r E )  = f cos ( t )  r i (  1 - rE3) sin’ x,. To solve for $ efficiently, $(r,  8, t )  is decomposed 
into a potential flow component $ p  and a viscous component $, as 

$ = $& o,t> + $&, ~ , O ,  (33) 
$Jr ,  0, t )  = f cos ( t )  rz( 1 - r-,)  sin2 x,, (34) 

and 9’($Jr, 6,  t))  = g ,  $Jr = 1) = 0, $,(r = r E )  = 0. (35) 

with 
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With this decomposition, a large change in $ caused by the change in the free-stream 
velocity cos ( t )  and large ri; results in only a small change in $ku(r, 0, t )  from one 
timestep to another. 

The forces F f  and Fn are evaluated using (29). Fourier transformation is applied to 
the time series of the unsteady drag beyond the initial transient. If the unsteady drag 
at t = t,+2n is the same as that at t = t ,  within four decimal places, the data after f, 
is considered to be uncontaminated by the initial transient. For very low frequency, this 
t ,  is not large (typically less than a few dozen timesteps for At = n/150) because the 
initial acceleration at f = 0 in the free stream is zero and the history effect is small. For 
larger values of St, it takes a few cycles to reach a steady oscillatory flow; thus the drag 
for high-frequency oscillation is obtained using the 4-mode expansion technique 
instead. 

3. Asymptotic solution for the unsteady drag in an oscillating flow at finite 
Reynolds number and high frequency 

In Mei & Adrian (1992), the Stokes solution, which is valid for Re < 1 and finite 6, 

was used to represent the high-frequency unsteady drag at finite Re. A similar 
approach was used by Riley (1966) in studying the second-order steady streaming 
induced by an oscillating flow over a stationary sphere. Landau & Lifsliitz (1 959) also 
suggested that the Stokes solution for the unsteady drag can be used for the high- 
frequency oscillating flow. However, no rigorous analysis has been given to justify the 
use of the Stokes solution for the unsteady drag at finite Re and high frequency for an 
oscillating flow over a sphere and the arguments usually given are ad hoc. 

Wang (1968) investigated the high-frequency oscillatory flow over a stationary 
cylinder at finite Re. For St-' < Re < St, one boundary layer with a thickness of 
O((Re St)-+) can be identified near the surface of the cylinder. A matched asymptotic 
expansion was used to obtain inner and outer solutions of the oscillating and the steady 
components of the stream function. Following closely the procedure developed by 
Wang (1968) for the cylinder, the solution to the oscillating flow over a sphere can be 
obtained. Since the technical details are the same as that given in Wang (1968), only 
the final result for the unsteady drag is given here. The governing equations in terms 
of the stream functions, and the definitions for various terms, and the solutions to 
those terms are given in the Appendix. 

From (A 3 1) in the Appendix, the unsteady drag (defined by (1 7 a)) at high frequency 
associated with the fundamental frequency can be easily obtained to O(1) by 
computing the pressure and frictional components given by (29), 

Fi e-lt/(6npf vU, a)  = D,, e-lt 

= e P [  - $2 + c( 1 - i) + I]  for finite Re and c % 1, (36) 

or D,,, --f 1 + G 

D,,, + - (e + $2) for finite Re and s >> 1. 

(37 a) 

(376) 

The subscript B denotes that the present asymptotic solution for finite Re coincides 
with the corresponding Basset's (1888) solution in the time domain or the Stokes (1851) 
solution in the w-domain for Re << 1. Thus the use of the Stokes unsteady drag solution 
for high frequency at finite Re is justified. The leading-order term of D,,, -i$c2, is the 
added-mass force, -i$2, plus that due to the free-stream acceleration, -+'. By 
comparing (37) with the Stokes solution, the O(e) term in DIB,  (1 -i) c, can be identified 
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here as the history force at finite Re in the large E limit. The O(1) term in D I B  is exactly 
1, that is independent of Re because the nonlinear convection only has higher-order 
effects at large 6. The implication of this O(1) term will be discussed later. 

4. Results and discussions 
4.1. Flow fields analysis for  various modes 

In this part, we examine the flow fields in three different limits: (a)  the quasi-steady 
limit St = 0;  (h) the low Reynolds number, low-frequency limit with St << Re < 1 ; and 
(c) the high-frequency limit with E - 0(1) or larger. A better understanding on the 
unsteady flow field is essential to the understanding of the unsteady drag behaviour. 
The low-frequency flow to be presented is obtained using the time-dependent approach 
while the quasi-steady and high-frequency flow field is obtained using 4-mode 
expansion. 

4.1.1. Quasi-steady ,%ow 

function g can be expressed in terms of the real components g,, as 
In the limit S t i O ,  the imaginary part of gll(r,O) defined in (16b) vanishes. The 

At any t, g(r,  8, t ;  Re, St  = 0)  should represent the steady result g(r,  0) at 
Re(t) = Recos(t) if (38) is accurate. Figure I compares two types of wall vorticity at 
Re(t) = 10, 20, 40 and 100: (i) that from the steady state solution; and (ii) that given 
by (38) with cos ( t )  = 0.1, 0.2, 0.4 and 1 with gnR(r, 0) (n  = 0,  1, 2 and 3 )  computed at 
Re = 100. The steady flow fields are computed first at Re = 10, 20, 40 and 100 with 
free-stream velocity U ,  = 1 and are subsequently re-scaled by the instantaneous free- 
stream velocity U, = cos (t) .  They are compared with the corresponding quasi-steady 
results. The 4-mode expansion is seen to give a wall vorticity that is in close agreement 
with the steady state results for cos(t) = 0.2, 0.4 and 1. For the wall vorticity at 
Re([)  = 10 based on Re = 100 and cos(t) = 0.1, the relative error is not small. This 
suggests that: (i) more terms in the expansion in (16b) are needed to represent 
accurately the wall vorticity at Re(t)  = 10 using the results obtained for Re = 100; (ii) 
four terms are adequate for Re(t)  = 20 and sufficient for Re(t) >, 40 (or higher) in the 
Fourier mode expansion based on the results for Re = 100. Nevertheless, since the 
absolute error between the quasi-steady and steady results at cos ( t )  = 0.1 is not large 
and the time span for /cos (t)l < 0.1 only constitutes about 6.4 % of the period, the 
overall error is small when the error is averaged over an entire period for 
0 < Re(t) < Re = 100. The four Fourier modes are thus adequate to describe quasi- 
steady flows even at Re = 100 in terms of the wall vorticity. 

It must be mentioned also that when the streamlines were plotted, the shapes of the 
separation bubble were not exactly the same for Re(t)  = 40 (based on the quasi-steady 
solution at Re = 100 and cos(t) = 0.4) and Re = 40 of the steady solution. This is 
because the values of the stream function near the separation region are very small and 
sensitive to errors, which implies that more terms are needed in (16) to represent 
accurately the quasi-steady flow field at various instantaneous Reynolds numbers. 
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FIGURE 1. Comparison of the instantaneous wall vorticity for an oscillating flow with Re = 100 and 
St = 0 at Re(t) = 10, 20, 40 and 100 between 0, the steady solution and --, the quasi-steady 
solutions obtained using 4-mode expansion. 
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FIGURE 2. Contours of the Fourier components of the vorticity at Re = 1, St = 0.002 in a purely 
oscillating flow, -400 < x d 400, 0 < y d 200. (a)  6; (b) QB; and (c) lIr.  
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4.1.2. Lo,v-fiequency ,flow wheiz St  < Re: interpretation o j  the numericul results and 
u yiiu1jtutic.e usyzpforic unulysis for  St < Re < 1 

To understand the behaviour of the unsteady drag, especially the imaginary 
components, at low frequency when St < Re, i t  is instructive to examine the gross 
feature of the flow field associated with various Fourier modes. From the 
time-dependent solutions, the first two Fourier components of the stream functions, 
$,,(y, O>,  $lR(r, 0) + i$lI,(r, H), and the vorticity, Co(r, O ) ,  CIR(r: 6') + iCll(r, 0) can be 
obtained by using Fourler transformation over a period of oscillation. To see the flow 
induced by the oscillation, the imposed flow, ;?sin' 0, is subtracted from the first mode 
which leaves &blR(r, 0) = $lR(r, 0) - ir2 sin2 8. Figure 2 shows the contours of C,,(r, 8), 
CIR(r,H) and C J r ,  0) for Re = 1, St = 0.002 (e = 0.00236) in the region: 
0 6 y = r sin H 6 200, -400 6 x = rcos 6' d 400. The results are obtained using 
65 x 129 grids with rE = 1200, c = 0.645, and a timestep size At = n/150. The 
important fea.ture is that all three contours are very elongated far away from the 
sphere. This suggests that the relevant lengthscale in the streamwise (x) direction is 
much larger than the lengthscale in the transverse ( y )  direction in the far away region. 
For the SA case (MLA 1991), it was shown that the relevant lengthscale in the region 
far away from the sphere for St < Re 6 1 is the Oseen lengthscale Re-'. Apparently, 
this is not the case in the PO case: these three components of the vorticity extend to 
regions far larger than r - Re-'. The large extent of the vorticity is obviously caused 
by the absence of a strong mean convection in the PO case. 

Figure 3 shows the contours of @,,(r,O), &hlR(r,6') and @11(r,8) for Re = 1, 
St = 0.002 in the same region: 0 < y < 200, -400 6 x 6 400. From figure 3(a), it is 
seen that the steady streaming, @,,(r, H ) ,  extends to a very large region, although it is 
quite weak at small Sf. In figure 3 (b), the streamlines of &,hlR(r, 0) exhibit a significantly 
elongated structure produced by the oscillating sphere. The disparity in the lengthscales 
in the x- and y-directions is also clear; and it is consistent with the earlier observation 
for ClR(r,8).  Figure 3(c) shows the imaginary component $Jr,6')  that is much 
weaker than &,klR(r,6'). Clearly, @11(r,6') behaves like a uniform flow in the region 
0 < y d 100, -400 6 x 6 400. This uniform flow behaviour of @lI(r, 6') at large 
distance is responsible for the imaginary component of the drag D I I .  It is also seen that 
further away the streamlines of $ll(r,H) appear closed and the contours are quite 
elongated. Figure 3(d) shows &klR(r, 0) for Re = 0.2, St  = 0.002. Comparing with 
figure 3(b), the flow structures are seen to be similar except that the scale in the 
transverse direction for Re = 1 (e  = 0.02236) is only a fraction of that for 
Re = 0.2 (e  = 0.01). 

To understand further the different lengthscales in the x- and y-directions, c$klR(r, 0) 
and $ll(r, 6') at  6' = n/64 (the first grid line away from the centreline or x-axis) and 
6' = in  (transverse direction) are compared at a given St (= 0.002) with two different 
Stokes numbers: c = 0.01 (Re = 0.2) and e = 0.02236 (Re  = 1). Figure 4(a) shows 
&klR(r, 8 = n/2) and &,blR(r, 19 = n/64) at these two Stokes numbers. For a given St,  
S@'IR(r, H = n/64) does not change with Re or c and it peaks at the same location, 
r - O(Stp'). This clearly suggests that the lengthscale in the streamwise direction is 
I ,  = St-'. On the other hand, +hlR(r, 8 = n/2) decreases with increasing e and the peak 
location of 6@lR(r, 6 = n/2) is roughly correlated with c-'. This suggests that the 
relevant lengthscale in the y-direction is I ,  = ecl. Figure 4(b) shows the imaginary 
component, @ J r ,  6' = 4 2 )  and $lll(r,  6' = x/64), at e = 0.01 and 0.02236. It is seen that 
the peak location of $ll(r, 6' = n/64) is at r - O(St-') and $ J r ,  6' = n/64) depends 
mainly on St. In the transverse direction, the peak of $ J r ,  6' = 4 2 )  is reduced with 
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FIGURE 3. Contours of the Fourier components of the stream function at Re = 1, St = 0.002 in a 
purely oscillating flow, -400 < x < 400, 0 < y < 200. (a)  go; (b) Sg,,; (c)  $ l I ;  and (6, 
Re = 0.2, St = 0.002. 

at 

increasing E and the peak location seems to correlate with E-'. It is interesting, however, 
that for r < 20 $ J r ,  0 = 4 2 ,  E = 0.01) and $ J r ,  0 = 4 2 ,  E = 0.02236) are nearly the 
same. All four curves in figure 4(b) have a slope of 2 in the log-log coordinates. Hence 
in the region r < e-l, y?Ir is again independent of E and the flow field of $lr in 
r 4 O(s-l) is a uniform flow over the sphere. Although Re = 1 is not small, the 
asymptotic feature of the flow fields is quite similar to that of Re < 1. For St < Re 6 1 
(Re < 1 in the asymptotic sense), this uniform flow extends beyond the Oseen region 
r - O(Re-l) because E 4 Re. 
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FIGURE 4. For caption see facing page. 
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The reason why I ,  = t-l is easy to comprehend; it arises from balancing the unsteady 
term by the cross-stream diffusion term in the unsteady Navier-Stokes equation. The 
streamwise lengthscale, 1, = St-', must result from the balance between the unsteady 
term and the convection term in the Navier-Stokes equation in the region r - O(St-') 
where the viscous effect is quite small for St + Re. Using 

x = x / l ,  = xst, Y = y / l ,  = ye, (39) 
to rescale equation (lo), the leading-order equation for the vorticity transport in the 
region where x - O(St-') and y - O(t-') can be derived as 

a Y  a r Y a y  2gl %+cos(t)- % = +Y- -- . 
c't ax 

Thus the vorticity transport far away from the sphere is governed by an unsteady 
convection-diffusion process that is similar to an unsteady laminar wake. The 
convection is in the streamwise direction with a time varying speed. The diffusion is in 
the transverse direction only. Owing to the retaining of the unsteady term, the vorticity 
and stream function decay and oscillate spatially for X % 1 and Y % 1, as shown in 
figure 4(a). These important dynamic features in the region r % Re-' are absent in the 
SA case (see Mei & Adrian 1992) owing to the strong mean convection that confines 
the vorticity to the Oseen region of size r - O(Re-'). 

How is the flow field in the outer region of x - O ( X ' )  and y - O(e-') connected to 
the flow field closer to the particle? Now consider the Oseen region, r - O(Re-'), which 
we may call an 'intermediate' region. Using p = rRe' = irRe, X' = xRe', we can 
obtain, for St < Re + 1, 

cos(t). = 9 ; g  ax 
to the leading order. In the above, the operator 9; is similar to g2 defined by (1 1) with 
p replacing r in the Oseen region. This is the quasi-steady Oseen equation for 
g = CrsinO; and t is only parametrically important, not dynamically. Because 
Y = re = pe/Re', the solution to (41) should not be valid for p - Re'/e 9 1 when 
Y - O( 1). Instead, it should join the solution to (40) for large p but small Y. Further 
toward the particle, there is the well-known Stokes region, r - O(l), or inner region. 
The dynamic equation for r - O(1) is the quasi-steady Stokes equation 

0 = 9 2 8 .  (42) 
Thus, the flow field at St + Re < 1 has a triple-region structure: an inner region 
r - 0(1), an intermediate region r - O(Re'-l), and an outer region x - O(St-'), 
y - O(cl).  It is also worth commenting that for large Re - 1, the inner and 
intermediate regions will be altered to accommodate the Prandtl boundary layer of 
thickness Re-;. However, the outer region, x - O(St-') and y - O(e-'), is unaffected by 
a finite Re. 

FIGURE 4. (a) Comparisons of &hIR(r, 8 = $71) and S$Jr, 8 = 71/64) at fixed St (= 0.002) between ---, 
E = 0.01 (Re = 0.2) and -, E = 0.02236 (Re = 1) for the PO case. Note that the lengthscales for 
&hlR are ecl at 8 = $71 (transverse direction) and St-' at 0 = n/64 (streamwise direction), respectively. 
(b) Comparisons of Ilrlr(r, 8 = in) and ~ J r ,  0 = 71/64) at fixed St (= 0.002) between ---, E = 0.01 
(Re = 0.2) and -, E = 0.02236 (Re = 1) for PO case. Note that, for St < t < Re < 1 ,  
$Jr ,  0 = n/64) along the streamwise direction depends on St for r < O(St-l) while $ J r ,  0 = in) 
along the transverse direction depends on St for r < O(t-'). (c) Comparisons of g:t(r,  8) and g,,(r, 8)  
at 8 = 71/64 and 0 = k71 for Re = 0.2, St = 0.002. ---, the quasi-steady solution and -, the 
numerical solution to the full Navier-Stokes equation agree in the Oseen region r - O(Re-'). 
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To see how these three regions join, we turn to the matched asymptotic solution, 
which is uniformly valid in the Stokes and Oseen regions, obtained by Proudman & 
Pearson (1957) for steady flow. For the quasi-steady oscillating flow, the leading-order 
solution for the vorticity related function, g, is 

gQ"(t, r ,  0) = Q'$Q"(t, r ,  0) 

= -2 (Re'+:) sin2 6cos ( t )  exp [ -iRe'r Jcos ( t ) l ( l  -cos H)]} if cos ( t )  > 0 
4 

(43) 
Fourier transformation, 

gyz(r ,  6) = - gQS(t ,  r ,  8)  cos t dt, : 1:' 
yields the first Fourier component of g,,(t, r ,  6). It is noted that gF!( r ,  6) = 0 because 
the quasi-steady flow is antisymmetrical with respect to time. Figure 4(c) compares 
g f z ( r ,  6) with its numerical counterpart g lR(r ,  0) for 0 = n/64 and n/2 for 
Re = 0.2 (Re' = 0.1) and St = 0.002 with e = 0.01. It is clearly seen that gy:(r, 8)  agrees 
very well with the finite difference result, glR(r ,  S), for r < 50. In the transverse 
direction, r - 50 corresponds to p - 5 + 1 and Y - 0.5 < 1, respectively, in the 
asymptotic sense. It is thus consistent with the discussion preceding equation (42). It 
should be pointed out that g,&,"(r, 0 = n/2) decays algebraically at p 9 1 although 
gQS(t,  r ,  0 = n/2) decays exponentially for Jcos (t)l > 0. This algebraic decay can be 
shown, using an asymptotic integration to result from the contribution near t = in  and 
t = in when cos ( t )  = 0 in the Fourier transformation. The agreement between the 
quasi-steady solution and the numerical solution to the full Navier-Stokes equation in 
the intermediate Oseen region shows that the foregoing qualitative description for the 
asymptotic structure of the flow field is correct. 

It must be emphasized that, for St < e + Re < 1 in the PO case, the drag D,, is 
determined by the strength of yk l I  in the region Re-' < r < e-' in which yklf appears as 
a uniform flow. For the SA case, the lengthscale 1, = e-' is not important for e 4 1 (Mei 
& Adrian 1992); the unsteady term in the vorticity transport equation can be treated 
as a regular perturbation. The mechanism for the generation of @,, in the region 
r + Re-' is thus not the same as in the PO case. It is therefore not surprising to see in 
$4.2 that the behaviour of D,, in the two cases is not the same either. 

4.1.3. High-frequency f low 
In the foregoing discussions, the importance of the lengthscales, 1, = St-' and 

1, = e-', are illustrated in the asymptotic limit St 4 e 4 Re < 1. Next, we consider flow 
field in the limit St-; < 1 for finite Re (under restriction St-' < Re < St) by usinB the 
asymptotic solution given in the Appendix and the 4-mode expansion. For St-2 -4 1 
with finite Re, we have e-l g 1. Equation (A 14) shows that the relevant lengthscale in 
the Stokes layer is actually 1, = not St-;, although 6 = St-: is used as the small 
parameter in defining the gauge functions to facilitate the asymptotic expansion. 

When the conditions St-; < 1 and Re < St are satisfied, g, given by (A 31) agrees 
very well with the 4-mode expansion result, as expected. In order to show further the 
scaling of the flow field with E at high frequency, we consider the case for c > 1, St-: < 1 
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FIGURE 5. Comparisons of the real and imaginary parts of g ,  between the asymptotic solution and 
numerical solution using 4-mode expansion at Re = 20, St = 0.5 and St = 3.2. (a) Real component; 
(b) imaginary component. -, Asymptotic solution; A, 4-mode expansion. 

or - 1, but Re > St instead of Re > St. Figures 5(a) and 5(b) compare the real and 
imaginary parts of g ,  between that given by (A 3 1) and that computed from the 4-mode 
expansion at Re = 20, St = 0.5 ( E  = 1.5811) and St = 3.2 (e = 4). Noting that 
6 = 3.2-t = 0.559 is not quite small, Re = 20 is not small, and furthermore the 
condition Re < St is not satisfied, the agreement between the asymptotic (3-term) and 
the numerical solutions for St = 3.2 is remarkable. In this case, E = 4 so that a thin 
Stokes layer of size Y - 6-l = 0.25 is clearly defined and the flow outside the Stokes 
layer is a potential flow. This shows that the more relevant parameter in the high- 
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FIGURE 6. (a), (b) Streamlines of $o and $ 2 E  at Re = 20, c: = 1.58; (c), (d) streamlines 
of fro and $2R at Re = 20, c: = 4. 

frequency flow is the Stokes number 6. For St = 0.5, 13 = 1.414 is not considered as 
small and 6 = 1.581 1 is not considered as large. However, the qualitative feature of g, 
has been captured by the asymptotic solution that is supposed to be valid only for 
6 < 1. The qualitative agreement can be attributed to the fact that .c > 1 is satisfied. The 
discrepancy in g,, lies mainly in the wall region; it arises because the asymptotic 
solution for g,  neglects the nonlinear term completely while the numerical solution at 
St = 0.5 does pick up a contribution from the nonlinear convection term in the 
Navier-Stokes equation. The smaller the St, the larger the discrepancy. At very low 
frequency, the nonlinear term becomes significant and the asymptotic solution fails. 

The above comparison between the 4-mode expansion result and the asymptotic 
result for the fundamental mode is excellent. However, it is noted that the three-term 
asymptotic expansion for the fundamental mode involves only the boundary-layer flow 
and the displacement and curvature effects. It does not involve the nonlinear 
contribution to g, from the steady streaming and the second harmonic terms. 

Figure 6 shows the flow pattern of the steady component, @,,(r,@), known as the 
steady streaming pattern and @ z R ( ~ ,  0) for (Re, e )  = (20,1.58) and (20,4). The 
information about lCrzR(r, 0) cannot be easily obtained experimentally. The steady 
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FIGURE 7. Stream function 3, at 0 = $T, Rc = 20, t = 4. St = 3.2. Solutions are obtained using --, 
4-mode expansion; . . . ., time-dependent solution averaged over one period; ---, asymptotic solution 
for high frequency. 

component, $"(r, S), for (Re, t) = (20,1.58) was also obtained by Drummond & Lyman 
(1 990) through averaging over one period in a time-dependent computation using a 
coarser grid in a smaller domain. From the streamline plots of $,,(r, 0) and ? j z R ( r ,  0)  at 
E = 4, a Stokes layer of thickness O(t-') is clearly observed. The steady streaming 
pattern extends further away from the sphere than $zE(r,  0)  that is mainly confined in 
the Stokes layer. This agrees qualitatively with the asymptotic behaviour described 
earlier. 

A closer examination of $&r, 0) at Re = 20 and t = 4 reveals that, in contrast to the 
fundamental mode for which the numerical and asymptotic results agree very well, the 
asymptotic solution over-predicts the strength of the steady streaming at  
(Re, E )  = (20,4). This implies that the asymptotic state for high-order harmonics has 
not been reached. Figure 7 compares $"(r, 0) at S = 7c/4 at (Re, c) = (20,4) based on: 
(i) a 4-mode expansion; (ii) a time-dependent solution averaged over one period; and 
(iii) the asymptotic solution. The two numerical solutions are close to each other while 
the asymptotic solution is 2 - 3 times larger. This large discrepancy is caused by the 
neglect of the high-order terms in solving for $, with a not-so-small S = St-: = 0.56. 
The violation of the condition Re < St niay also contribute to the discrepancy. At high 
values of St, the discrepancy becomes smaller. However, accurate numerical solution 
for $ J r , S )  is difficult to obtain owing to the thin boundary layer and a significant 
potential flow region for $,, outside the Stokes layer, although the solution for $l (r ,  0) 
is very accurate. An important conclusion from the foregoing discussion is that, in the 
(Re, E )  parameter space, when the asymptotic solution becomes accurate for the 
fundamental mode, the high-order harmonics and steady streaming component may 
not yet be accurate. Our primary focus is on the unsteady drag that is mainly dictated 
by the fundamental mode. Therefore the asymptotic solution at high frequency is quite 
useful and the use of the Stokes solution for the unsteady drag at finite Re and large 
Stokes number is justified. 



154 R. Mei  

(a )  

3 

2 

1 

FT(t)  0 

-1 

-2 

-3 

-4 
0 1 2 3 4 5 6 

t 

5 

-5 

-10 

I ! .  . .  I . . . . , . .  . .  I . . . . , . . . . , , . . . , .  

0 1 2 3 4 5 6 
t 

FIGURE 8. Comparison of the total unsteady drag between ---, OH’S result; present numerical 
results: 0,4-mode expansion; -, time-dependent solution; and . . . ., prediction using the proposed 
form for the PO case. (a) (Re, e)  = (40,l .O); (b) (Re, e) = (40,4.0). 

4.2, Comparison of the total unsteady drug and quasi-steady drug; 
validity of the 4-mode expansion 

To assess the accuracy of the 4-mode expansion given by (16b), the total unsteady drag 
obtained from the numerical solution given by (30) is compared with the time- 
dependent solution and the results of OH at (Re,  €) = (40,l). The OH expression for 
the total unsteady drag in the PO case, equations (2a-c) and (3)-(5), is derived from 
and therefore tested against the experimentally measured values. The total unsteady 
drag as a function of time given by their expression at (Re,  e) = (40,l) is thus reliable. 
For a sphere oscillating with a dimensionless velocity, 

v = cos ( t ) ,  (44) 

FT(t) F&(t)/(67tpvfU,,a) = FQS+FH+PAM, (45) 

in a quiescent fluid, the total dimensionless drag is 
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where 3QAy, 9" and .y4Ll, are the dimensionless counterparts of FbS ,  FL and F.iJI 
normalized by 6rcpvf U,  a.  The OH expression (denoted by the superscript OH below) 
leads to the following, 

.F;g(t) = rFQs(t) = $(f)COS(t), 
p H  -OH ( t )  = +CHs[cos(t)-sin(t)], 

F:g(t) = - C, +E' sin ( t ) ,  

(46) 
(47) 
(48) 

with d ( t )  given by (2e-i). The total force based on OH'S correlation is thus 
Ff,"(t) = F g f ( t )  + F$"(t) + F/"A"$(t). The numerical solution based on the 4-mode 
expansion (denoted by the superscript 4m below) gives the total force as 

F,-4Tm(t) - Dl,cos(t)+[D,,+i$~2)]sin(t)+D3,cos(3t)+D3,sin(3t). (49) 

In the above, the term -i$t.' is subtracted from D,, because D,, is the result for an 
oscillating flow over a stationary sphere and -i$e2 is the force due to the free-stream 
acceleration. The time-dependent solution (denoted by the superscript ' time ' below), 
after subtracting -i$E'sin(t), gives the total force FY,"'(t) in the time domain. Figure 
8(a)  compares FgH( t ) ,  F$m(t), and F?""t) at (Re ,€ )  = (40, 1). It can be seen that 
F,-4Tm(t) and F$"'((t) agree very well with each other and they both agree well with 
Fg"(t). Another test for (Re,  t.) = (40,4) is shown in figure 8(6) and good agreement 
is observed for higher E between F$"(t) and F$m(t). Hence, the first four modes 
retained in the expansion (166) give a satisfactory total drag at moderate and large 
values oft'. 

As another confirmation of 4-mode expansion, the computed quasi-steady drag at 
e = 0 and finite Re is compared with that given by (2). In the limit t' + 0, the history 
force and the added-mass force approach zero. The quasi-steady drag can then be 
obtained from the numerical solution as 

F:?(t) - Dl,(Re, t. = 0) cos ( t )  + D3,(Re, e = 0 )  cos (3 t )  + . . . 
= D,B,(Re)cos(t)+D,Q,(Re)cos(3t)+ .... (50) 

The comparisons between F:?(t), Fg?l"(t), and the empirically based FBs(t)  using 
( 2 4  and (46) are shown in figure 9(a) for Re = 20, 100 and 200. Very close agreement 
can be observed. To measure the difference between F:;(t) and FBs(t), the standard 
&-norm over one period of the oscillation is evaluated, 

Err2 = l l ~ ~ ~ ~ ~ ~ - ~ ~ s ~ ~ ~ l l ~ / l l ~ ~ ~ ~ ~ ~ l l ~ .  (51) 
For Re = 20 and 200, the relative error is 2 %  and 5.7%. For Re = 0.1, Err, = 0.0035 
because the nonlinear effect is very small. For Re = 200, a true quasi-steady flow 
may not be realizable owing to the flow instability. Kim & Pearlstein (1990) found an 
asymmetrical instability at Re - 173 through a linear stability analysis for a steady 
flow past a sphere. The inclusion of Re = 200 in figure 9(a) merely shows the extent of 
the comparison and does not address the issue of actual flow instability. 

To determine whether or not the four modes retained in the Fourier mode expansion 
account properly for the nonlinear interaction, the Fourier transformation (FT) of the 
empirically based FQs(t) is used to assess further the accuracy of the 4-mode expansion. 
The FT of FBs(t) gives a series of coefficients, a, (n  = 0,1, . . .), that decrease with 
increasing n. The first two non-zero coefficients, a, and a3, are approximately equal to 
DIQ,(Re) and D3Qs(Re). The third coefficient, a, ,  gives an estimate for D,Q,(Re) that 
has been neglected in the 4-mode expansion. Figure 9(b) compares the steady state 
drag D,(Re), numerical values of Dlgs(Re)  and D3Q,(Re) for the PO case and the non- 
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zero coefficients of the FT, a,, a3, and as. Good agreement between DIQs(Re) and a, 
and between D3Qs(Re) and a3 can be seen for 0.1 < Re < 200. Hence the nonlinear 
interactions among the first few modes can be properly represented using the 4-mode 
expansion. 

As w increases, D,, and D,, increase and approach the limits given by the high- 
frequency asymptotic solution. On the other hand, the numerical results show that D3, 
decreases with increasing w and D!I increases from zero to a small value that depends 
on Re, and then decreases with increasing w .  In terms of its magnitude, 
D, = (D:,+Di,)i attains a maximum at w = 0. As w increases, the higher modes 
(n  3 5 )  will contribute even less. Therefore, it is proper to discuss the unsteady drag by 
focusing on the first mode. 
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4.3. Dependence of the unsteady drag on,frequency in the PO case 
The total drag F$”(t) was based on experimental measurements and is reliable; its 
decomposition into three components, F&, F, and FA,, is sound. However, their 
functional forms and the corrections, C, and C,, may not be physically sound. In 
deriving C, and C,, OH subtracted FQs(t)  from the total unsteady drag and 
determined C, by the drag at t = i n  when the assumed history force F, is 0. A value 
of C, = 2.88 was then obtained at t = fn  when FAM = 0. Dependence of C,  on the 
acceleration parameter A ,  was determined at other instants. However, the corrections 
do not approach to the respective limiting values of C, = 6 and C, = 0.5 for finite e 
in the limit Re+ 0. In this limit, the Stokes solution is known to be valid for finite e.  

As in the SA case, the frequency-dependent part of the unsteady drag can be 
obtained by subtracting the quasi-steady drag DIQs(Re)  from the total unsteady drag. 
Since the third harmonic drag component D, decreases rapidly with increasing 
frequency the drag associated with the first harmonic will be the main focus. 

4.3.1. Unsteady drag al intermediate and high frequencies: e - 0(1) or larger 
As shown by (36), the leading-order term of the unsteady drag at high frequency is 

the added-mass force, - i$e2, plus the force due to the free-stream acceleration, - i$e2. 
Rivero, Magnaudet & Farbe (1991) carried out an elegant numerical procedure to 
separate the contributions to the total unsteady force from the history force and the 
instantaneous added-mass force. The analysis of an oscillating flow and a uniformly 
accelerating flow demonstrated that the added-mass force is the same as in potential 
flow. Figure lO(a) shows the imaginary component Dl,, obtained from the 4-mode 
expansion, for ‘moderate’ and ‘large’ values of e at Re = 0.2 and 40. The asymptotic 
limit -i$? can be clearly identified. This is the same as in the SA case (MLA 1991). 
Therefore no modification is necessary for FAM(t) at finite Re for the oscillating flow. 
Subtracting - i$c2 from the imaginary component of the total drag, as was done in the 
SA case, the first imaginary component of the history force, D,,,, in the entire 
frequency domain is obtained : D,,, = D,, - (- i;e2). In the large e limit, D,,, - - ie. 
Figure 10(b) compares D,,, of the PO case at Re = 0.2 and 40 with that of the SA case. 
It is seen that DlrH,  normalized by the amplitude of the oscillation in both cases, 
reaches the asymptotic limit at smaller e in the PO case than in the SA case; and that 
DllH of the PO case is larger than D I I H  of the SA case. The low-frequency behaviour 
of D I I  or D I I H  will be further discussed later. 

The frequency-dependent part, or acceleration-dependent part, of the first real 
component drag is evaluated by subtracting the quasi-steady drag at e = 0 from the 
total drag 

 re, €1 = D,,(Re, 6 )  -D,qs. (52) 

The real component does not involve the added-mass force. Following the study for the 
SA case (MLA 1991), D,,,, is identified here as the first real component of the history 
force in the frequency domain. The Stokes solution or the Basset solution for the 
history force gives DIBRAC = 6. Figure 1O(c) indicates that D,,,, < DIBRAC = e for all 
c and DIRAC + D,,,,, = e for large e. Thus the history force given by Basset (1888) in 
the time domain overestimates the actual values at large time for the PO case. The 
result for D,,,, at very small c should be interpreted with caution because of the loss 
of numerical accuracy in subtracting two close, approximate numbers. Although 
DIRAC of the PO case is larger than DIRAC of the SA case for all e, the differences for 
DIRAC and D,,, between the SA case and the PO case are not large for moderate values 

6 F L M  270 
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of 6 and quite small for large e. This suggests that when (6)-(8) are used for the PO case, 
the error for the history force will not be too large. This point will be discussed in $4.4. 

The high-frequency asymptotic solution for the PO case shows that after the history 
force and the added-mass force are subtracted from D,,, the O( 1) term left is exactly 
1. The definition (52) thus leads to DIBRAC = 1 - DIQ,(Re) + e. Because DIQs(Re) > 1 
for Re > 0, it is seen that DlsRAC is less than the actual history force DIRH - c at large 
E by an O( 1) quantity Dlgs(Re)  - 1 - $ - 1. Note that since the higher harmonics of the 
drag at large E is quite small, it is appropriate to discuss the history force by focusing 
on the first mode. However, the expression for the history force given by ( 6 t ( 8 )  does 
not include this O(1) difference because the expression was obtained from the 
imaginary component and the principle of causality. This has the following 
implications. If one accepts that Fgs(t) be represented by (2) and FALw(t) be represented 
by the potential flow solution, then the history force must include such an O(1) 
quantity for small time. On the other hand, if one uses the potential flow solution for 
FA,w(t) and Basset (1888) solution or (6)-(8) for FH(t) at small time, that are 
asymptotically correct as shown by the analysis given in the Appendix, then this 
difference, D I Q s -  1, should be taken into account in the quasi-force .FQs(t>. For many 
practical applications of interest, particle Reynolds number is not very large (say, Re 
below several hundred). The amount of over-prediction, 9- 1, in FQs(t) is then small 
in comparison with FAM(t) and even FH(t) for a highly accelerating flow; and we 
should not be too concerned with this error in applying equation (9). 

4.3.2. Low-frequency behaviour: St < e 6 1 
In the SA case, D,, in the low-frequency limit is proportional to St. This motivates 

us to examine the behaviour of D,,/St (m = 1,3,. . .) as functions of St at a given Re. 
Figure 1 1 shows (D,,(/St for m = 1,3 and 5 for Re = 0.2 and St < 1. In direct contrast 
to the SA case in which D,,/St = -0.75 (D,, is already normalized by the oscillation 
amplitude; see Mei & Adrian 1992) as Re+0, the PO case exhibits a logarithmic 
dependence of ID,,I/St on St for all three modes. In particular, 

with h, - 0.486 and h, - -0.446 at Re  = 0.2. It is observed that all three modes have 
h, - 0.5 within the scattering of the data. All numerical results shown in figure 11 are 
obtained using y E  = 1200, c = 0.645. Recall that $,,(r, 0 = 71/64) peaks at r - St-' for 
St < 1 as shown in figure 4(b) ,  a domain of rE = 2/St is needed (M. R. Maxey, private 
communication 1993) to capture accurately the spatial variation of $,, which in turn 
determines D,,. The results for St > 0.001 are obtained using a 65 x 129 grid and are 
shown in figure 11. The unsteady drag for St d 0.001 is first obtained from a series of 
computations using rE = 300, 600 and 1200 on a 129 x 257 grid; these results at given 
St and Re  are then extrapolated to l / r ,  + 0. The extrapolated values of D,, as 1 / r E  + 0 
for very small St are joined with the rest of the data for larger St. Although a little 
scattering in the data is visible owing to numerical errors, the logarithmic dependence 
of D,,/St on St spans over three decades. The fact that all three modes exhibit, to some 
extent, such behaviour reinforces the logarithmic dependence of D,,/St on St to the 
leading order in St. 

Having established, numerically, the logarithmic dependence of D,, on St ,  it is 
instructive to see if the analytical expression of LB exhibits the same behaviour at low 
Re. The time history of the force on an oscillating sphere is thus computed using 
equation (6.15) of LB at Re = 0.2 over a range of St. The long time result is then 
Fourier transformed to obtain D,, in the frequency domain. The first three non-zero 

D,,/St - h, log St - h, for St < 1, (53) 

6-2 
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FIGURE 1 1. Low-frequency behaviour of D,,, D,, and D,, at Re = 0.2 in the purely oscillating flow. 
All three components exhibit the dependence on St log St to the leading order in St as St --f 0. Solid 
symbols denote the present numerical results ; open symbols denote the results obtained from 
Lovalenti & Brady’s (1993~) analysis at low Re. 

modes, D,,/St, D,,/St and D,,/St, based on LB’s expression are shown in figure 11 
(denoted by open symbols) together with the finite-difference results. Close agreement 
is observed for all three modes between the analytical and numerical results. This lends 
further support to the logarithmic dependence of the drag on S t  in the PO case at low 
Re. 

In fact, the logarithmic dependence is not just limited to small Re flows, as shown 
in figure 12(a) for D,,/St as a function of St  for 0.2 6 Re 6 40. To examine more 
clearly the effect of Re on D,,, the dependence of h, and h, on Re is shown in figure 
12(b) for 0.2 < Re 6 40. It is observed that h, levels off at higher Re while h, increases 
almost linearly with Re for Re 1. This suggests that at higher Re, the linear 
dependence of D,, on St is overwhelming while the logarithmic dependence is relatively 
weaker. The data presented in figure 1O(c) for DIRAC in the small S t  limit indicate that 
DIRAc K St’log St to the leading order in St for both Re = 0.2 and Re = 40. The 
results are not shown here because the data in figure 1O(c) for small St are believed to 
contain larger errors than those in D,,. 

The main differences between the PO case and the SA case in the low-frequency limit 
are now clear. However, it is more important and revealing to see how these two 
different limiting cases are related and how the leading-order behaviour of D,, changes 
from D,, - O(St) in the SA case to D,, - O(St1ogSt) in the PO case. To address this 
question, we consider an oscillating flow with a finite-amplitude fluctuation imposed 
on a mean stream, U,  = U,,( 1 - a, + a,  cos t ) ,  in which a, (0 6 a, 6 1) is the amplitude 
parameter. Numerical results are obtained for Re = 0.2 over a large range of St for 
each a,. Again, the logarithmic dependence, D,, - h, S t  log St - h,  St ,  is observed in the 
leading order as S t  + 0. However, h, can not be determined as accurately as h, because 
O(St) is a high-order term in D,,; hence the behaviour of h, should be interpreted only 
qualitatively. Figures 13(a-b) show the dependence of h, and h, on the oscillating 
amplitude a,. For a1 < 0.5, h, decreases exponentially fast as a,  -0, which indicates 
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the importance of the flow reversal on DII .  For aI > g, ha seems to level off which 
means that the oscillating component now dominates and the small mean component 
has little effect on ha. In the SA case, h, = 0 and h, is linear in al(h,/a,  - 0.804 at 
Re = 0.2); thus the quantity h,/a, is shown in figure 13(b). It is seen that h J a ,  is 
roughly a constant up to a1 - 0.4. For 0.8 < a,  < 1, h, is roughly the same but h, 
decreases with decreasing al. Near a, = 0.5, the numerical inaccuracy of h, may be the 
worst as h, changes sign quickly. Combining the behaviour of h, and h,/al, it may be 
deduced that: (i) the logarithmic dependence of D,, on St is a rule rather than an 
exception for an oscillating flow and the linear dependence of D,, on St demonstrated 
in the SA case is actually an exception. (ii) For a fixed small but finite St, the theory 
developed for the SA case seems to describe, practically, the oscillating flow behaviour 
for 01, up to 0.4 because h, is very small for small a,. 

Temkin & Kim (1980) argued that the changing wake structure significantly affects 
the unsteady drag. In the foregoing discussion for the low-frequency drag, it is seen 
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FIGURE 13. Dependence of h, and h, on the oscillating amplitude a, at Re = 0.2. The free-stream 
velocity is U, = U,[1 -a, + a1 cos 4 Reynolds number is defined as Re = U, 2alv. The SA case 
(MLA 1991) is for a, < 1 with h, = 0. (a) h,; (b) h,. 

that the periodical flow reversal has no effect on the real components D ,  but it does 
have some subtle effect on the imaginary component D,. However, since D, is very 
small for small St, it is not possible to measure any significant effect of the changing 
wake structure on the unsteady drag using an indirect measurement based on particle 
trajectories. At moderate and high values of 6 ,  D,, and D,, behave the same as in the 
SA case, which suggests no effect on the drag caused by the changing wake structure 
due to flow reversal. 

For a particle in a turbulent environment, it is difficult to determine a, especially if 
the flow is spatially inhomogeneous. Thus, it is impractical to devise an expression for 
the history force at finite Re that depends on a, explicitly. There are three possibilities 
to approximate the history force without involving a,: (i) Basset’s (1888) expression; 
(ii) the approximate expression derived by Mei & Adrian (1992) based on the SA case; 
(iii) an expression that is based on the current results of the PO case. From the 
Basset expression, DllH - (;Rest)+. As St+0, D,,, K St for the SA case and 
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D,,, - h, St log St - (h ,  -:Re) St for the PO case. As St --f GO, all three give the same 
asymptotic value: D,,, - (:Rest);. Although D I I ,  of the PO case has a logarithmic 
dependence on St at small St, it is seen from figure 10(b) that D,,, of the PO case is 
closer to that of the SA case than to the Stokes solution in the small St limit. Since it 
is difficult to develop an expression for FA(t’) at  finite Re while the expression given by 
equations (6)-(8) has been tested for an impulsively started flow (Mei 1993 and LM), 
Fk(t’) given by (6)-(8) is preferred. The error in predicting Fk(t’) in the time domain 
for the PO case using (6)-(8) will be examined next in $4.4. 

It is also interesting that the size of the computational domain rE has such an 
important effect on the low-frequency drag. This suggests the following complicated 
long-time behaviour of the history force. In a dilute suspension, the particle mean-free 
path, A, is not infinite. A 0.1 % concentration results in h / a  - 10. In a pipe flow, the 
ratio of the pipe diameter to particle size is not infinite either. These interactions may 
significantly reduce the long-time history force. 

For the PO case one can also infer from h,(Re) and h,(Re) the limiting value of St 
below which the quasi-steady drag (2) is a good approximation for the unsteady drag 
owing to a purely oscillating flow around a sphere. For a given Re, one may neglect 
the history force and added-mass force when Ih, St log St -h, Stl/$ < 0.01. For 
Re = 0.2 and 40, the limiting values of St are 0.00484 and 0.0014, respectively. 

4.4. Assessment of the proposed particle dynamic equation at jinite Re 
Even if one assumes that the approximation given by (6)-(8) can be used to represent 
Fk(t’), the following questions arise immediately when u; or v‘ is comparable to U’: at 
which instant should u’ and 0’ be used in (7)  and which velocity should Re in (8) be 
based on? There are two relevant instants, t’ and 7’, in the integrand for the history 
force. Since the relative acceleration is evaluated at 7’, we hypothesize that the 
velocities u’(7’) and v’(7’) be used in (7) and Re(7’) based on lu’(~’)-v’(~’)l be used in 
(8). Combining the added-mass force derived by Auton et al. (1988) and Rivero et al. 
(1991), the modified history force, the quasi-steady force, and the body force, equation 
(9) is generalized to represent the total unsteady drag on a moving spherical particle, 

d7’ d(u’ - v’) F’( t )  = $na3( pp - pf) g + 6npf ua(u’ - v’) $(t’) + 6np, ua d7’ 

with $(t’) given by (2c) or (2e-i) and K(t’-7)  given by 

where &(Re) = 0.75+0.105Re(~’); Re = Iu’(~)-v’(7’)12a/v. (56) 
In equation (54), u’ and v‘ are the instantaneous velocities with no restrictions on the 
relative magnitude of the unsteady component compared to the steady or mean 
component. For two- or three-dimensional flows, generalization of (54) to a vector 
form may be possible but much remains to be investigated. For uniform flows, 
Du’lDt’ = du’/dt‘ because the spatial derivatives vanish. 

To assess the accuracy of equation (54), the following tests are conducted against 
numerical and experimental results for : (i) the PO case computed presently; (ii) the SA 
case; (iii) a sphere that possesses a large terminal velocity settling in a stagnant viscous 
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FIGURE 14. Comparison of the added-mass force between the present form and OH’s form at 
Re = 20, t = 0.1, 1 and 4 for the PO case. 

liquid with initially zero velocity. Comparisons are made for each component in 
addition to the total drag. Performance of the Basset’s (1888) and OH’s expressions for 
the history force and the added-mass force is also assessed. 

In the PO and SA cases, the drag components are first normalized by 6np, vU, a,  
where U, is the mean free-stream velocity in the SA case and the amplitude of the 
oscillating velocity in the PO case, respectively. Time is made dimensionless by the 
frequency of the oscillation w. This results in the following, 

F&(t) = $(t)  V(0, (57) 

with 

Re(7) = U, V(T) 2a/v, f H ( r )  = 0.75 + 0.105Re(7), (60b, c) 
where V(t) = cos(t) for the PO case and V(t) = 1 +Pcos(t) for the SA case. The 
amplitude /3 = 0.1 is chosen in the SA case. Using Basset’s (1888) expression, 
FH(t) = e(cos ( t )  - sin ( t ) )  and FH(t) = /~E(COS ( t )  -sin (1)) are obtained for the PO and 
SA cases, respectively. The added-mass force in Basset’s solution and the presently 
proposed form is FAM(t) = -$2sin(t) for the PO case. 

4.4.1. The PO case 
Figure 14 compares the added-mass force, scaled by e2, of the present form, (59), 

with that of OH, (48)’ for the PO case at Re = 20 and E = 0.1, 1 and 4. The added-mass 
force based on OH’s form exhibits a peculiar behaviour near the point of maximum 
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acceleration or zero velocity. The added-mass force drops rapidly when V(t)  = 0 for 
small E .  This type of peculiarity has no known physical basis. It exists because the 
correction coefficient C, was not determined on physical grounds. At E = 4, that 
corresponds to the high-frequency limit, this peculiar behaviour almost disappears 
because the unsteady flow approaches the Stokes flow limit and little correction needs 
to be applied to the history force and the added-mass force. Although equations (3)-(5) 
and (47) were based on the experimental results of the PO case, the performance is not 
satisfactory. On the other hand, the present form for the added-mass is well behaved. 

The history force FH(t) is the most difficult component to represent accurately. 
Figure 15 compares three forms of the history force at Re = 20, E = 0.1, 1 and 4 : OH’S 
form (47), the present form (58) and (60), and the present numerical result based on the 
first mode, D,,, and DIIH.  The Stokes number e is chosen to cover small, intermediate 
and ‘high’ frequencies. For E + 1, the third mode, mainly the imaginary component 
D31H, is not entirely negligible in comparison with D I I H .  Thus the numerical result for 
F,(t) based on DIRH and D I I ,  for c = 0.1 suffers slight inaccuracy. For E = 1 and 4, 
D,,, and D,,, are the dominant part of the history force because the higher modes 
are small. It is seen that OH’s form over-predicts FH(t) at low frequency, e = 0.1, while 
the present form slightly under-predicts F,(t) since it is known to give a lower value. 
Also shown in figure 15 (a)  is the prediction using the classical Basset force expression 
(Basset 1888). The classical form grossly over-predicts FH(t) at finite Re. Similar to the 
added-mass force of the OH’s form, a large spike appears in F$,(t) at t = an: when 
V(t)  = 0. At E = 4, the present form agrees well with the numerical result while OH’s 
form still exhibits some peculiarity near t = n: when the acceleration is zero. At E = 1, 
both forms have similar inaccuracy compared with the numerical results. This persists 
at higher Re. The comparison for total drag between the prediction based on (54) and 
the numerical solution at (Re, e) = (40,l) and (40,4) has been shown in figure 8;  and 
the error in the total drag at e = 1 using (54) is due to the inaccuracy of F,(t). Figure 
8(a) actually shows the worst case since this error vanishes when e is small because 
F J t )  K e2 as E approaches zero. The error also vanishes for large c, as shown in figure 
8 (b), because the present form approaches the high-frequency limit correctly. The 
seemingly good agreement at e = 1 between the experimental results and the prediction 
using OH’s form stems from the fact that OH’s form has errors in both expressions for 
the added-mass force and the history force. These errors happen to cancel each other 
in the PO case. It is noted that the expression give by (60) is based onf,(Re) derived 
from the SA case assuming a constant Re. The comparisons shown in figure 15 are 
rather encouraging since F,(t) given by (6)-(8) appears robust in its application to the 
PO case. 

4.4.2. The SA case 
Figure 16 compares F,(t) at Re = 40 and e = 1.0 for the SA case with p = 0.1. Here, 

Re is based on the mean free-stream velocity. Clearly, both OH’s and Basset’s forms 
over-predict FH(t) and both have large phase errors indicated by the locations of the 
maximum in F,(t). The present form agrees very well with the numerical results 
because FH(t) is constructed from the results of the SA case. 

4.4.3. A sphere settling in a stagnant viscous fluid 
Moorman (1955) conducted a series of careful experiments for a sphere settling in 

a quiescent fluid. The Reynolds number Re, (based on the diameter and the actual 
terminal velocity VT) spans a large range. The density ratio p = p,/p, of the particle to 
fluid ranges from 1.17 to 9.15. To predict the velocity history of the settling sphere, time 
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FIGURE 16. Comparisons of the history force FJt) between -, the present form, ---, OH’s form, 
and the computed results for the SA case at (Re, 8) = (40, l), amplitude = 0.1.. . . , Basset (1888); 0, 
MLA (1991). 

and velocity are made dimensionless by the diffusional timescale a2/v  and the nominal 
terminal velocity VTs = 2(p- 1) a2g/9v obtained by balancing the body force and 
Stokes drag. This results in: 

2(p+0.5) dV - = 1 -#V(t)- 
9 dt 

where the body force and the quasi-steady force are FG-B = 1 and FQs(t) = - $V(t) after 
they are normalized by 67tpfvVTSa. The last term is the history force whose kernel is 

K(t -7)  = ( ~ ( t  - 7))-;{ 1 + [&x(Iie(7) ( t  - ~);/f~(7))~]~}-~. (62) 
The added-mass force, normalized by 6np, vVTS a, is 

1 dV 
9 dt FAM(t) = -- -, 

that has been incorporated on the left-hand side of (61). It is noted that Re andf, are 
evaluated at 7 in (62). The following data in Moorman (1955) are selected: 
(Re,,p) = (28.57,2.467), (48.787,1.267), and (331.45,2.573) (they correspond to Run 
27, Run 36, and Run 33, respectively) because these cases have enough data points to 
reach V/V, N 1 and the Reynolds numbers are representative of moderate and high 
values. 

Figure 17 compares the settling velocity history v(t)/V, computed using OH’s form, 
the classical representations for the Basset history force and added-mass force (Basset 
1888), and the present particle dynamic equation with experimental result (Moorman 
1955) for Re, = 28.57, 48.78 and 331.45. Close agreement between the measured and 
the predicted values (based on equation (54)) is observed for all three cases, especially 
at the later stage when v approaches V, and the unsteady forces are supposed to be 
small. OH’s form gives a smaller velocity than the measurement for t - 1. Noting that 



168 R. Mei 

V - 
VT 

0 4  i i i 
10-2 lo-' 100 10' 

1 .0 

0.8 

0.6 

0.4 

0.2 

1 
1 

10-2 10-1 1 oo 
1 

I .0 

0.8 

0.6 

0.4 

0.2 

0 
lo-' 1 O0 t 10-2 

FIGURE 17. Comparison of the particle settling velocity in a stagnant liquid based on -, the present 
form, ---, the Basset (1888) solution and -.-., OH'S form. (a) (Re,,p) = (28.57,2.467); (b) 
(Re,,p) = (48.78,1.267); (c) (Re,,p) = (331.45,2.573). 0, Moorman (1955); ..., no history force. 
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the acceleration parameter defined in ( 5 )  ranges from zero to infinity and Re(t) ranges 
from 0 to Re, as high as 331.45, which is beyond the range investigated in this study 
and in Mei & Adrian (1992) for the SA case, the present particle dynamics equation 
does capture the transient variation of the particle velocity quite well. 

It is instructive to examine the behaviour of FAM(t) and 5 H ( t )  during the transient 
passage. Figure 18 compares FAM(t) and FH(t) for 0 < t < 1 based on OH’s form, the 
present form and the classical form of Basset (1888) for Re, = 48.78. The comparisons 
are shown only for this period of time because the experimental data for v /V,  exist 
only for t < 0.8 for this case. Furthermore, FH(t) given by (6)-(8) is only a rough 
approximation and should not be viewed as exact. It is seen that the added-mass force 
FAM(t) of OH’S form decreases first and then peaks at some later time, which again has 
no known physical basis. The present form predicts monotonically decreasing FAM( t )  
that is close to the prediction based on Basset’s representations for FH(t) and PAM(t). 
For FH(t), the classical form and OH’s form predict a &decay for FH(t) for t - O(1). 
It is seen that the presently predicted FH(t) decays much faster than the other two 
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forms at t - 1. By linearizing equation (61) near c = Kp, it can be shown that 
1 - z:(t)/ VT is proportional to .FH(t). Thus the settling velocity y ( t )  given by the present 
particle dynamic equation should approach Kp faster than the other two. This is 
consistent with what is shown in figure 17. 

Finally, it must be emphasized that the proposed particle dynamic equation is only, 
strictly speaking, applicable to spatially uniform unsteady flows. For non-uniform 
viscous flows, uncertainty remains on how best to represent the contribution to the 
drag owing to the spatial acceleration. More discussions can be found, for example, in 
the work of Auton et al. (1988) for particle motion in inviscid flows. 

5. Conclusions 
(i) Numerical solution, together with a high-frequency asymptotic solution, of the 

unsteady Navier-Stokes equation has been obtained for flow over a stationary sphere 
at finite Reynolds number with oscillating free-stream velocity. The total unsteady drag 
computed compares well with Odar & Hamilton's (1964) experimental results at finite 
Re. Various unsteady drag components are examined. 

(ii) The flow field at St Q Re < 1 exhibits a triple-region structure: an inner Stokes 
region Y - O(1), an intermediate Oseen region r - O(Re-l), and an outer region 
x - O(Strl),y - O(e-l). In the inner region, the flow is governed by the quasi-steady 
Stokes equation. In the Oseen region, the flow is governed, to the leading order, by the 
quasi-steady Oseen equation. In the outer region, the flow is governed by an unsteady 
convection-diffusion process. 

(iii) The history force at finite Re is linearly proportional to wf only at high 
frequency. 1;or St Q Re or St << 1, the imaginary component of the drag has a 
logarithmic dependence on St, D I I  - (ha St log St - h, St). This is confirmed also by the 
analytical results of Lovalenti & Brady (1993 a). As Re increases, h, increases nearly 
linearly while h, seems to level off. Thus the logarithmic dependence of the drag on St 
is relatively weaker at higher Re than at small Re. For a mean flow imposed with a 
fluctuation, U,( 1 -a1 +al cos wt' ) ,  ha decreases rapidly to zero as a1 +- 0 and the SA 
case investigated by MLA (1991) is recovered. 

(iv) A general particle dynamic equation including the quasi-steady drag, history 
force and added-mass force in the time domain is proposed for particle motions at finite 
Reynolds number. The present form for the history force performs consistently better 
than that of Odar & Hamilton (1964) at finite Re when tested against the numerical 
results of the SA case and the PO case. The predicted velocity of a settling sphere with 
large terminal velocity in a quiescent fluid is in close agreement with the experimentally 
measured values (Moorman 1955). 

The author is grateful to reviewers for their many useful criticisms and comments 
that led to the improvement of the paper. 

Appendix. Asymptotic solution for the oscillating flow at finite Reynolds 
number and high frequency 

convenience, as, 
The governing equation for the stream function $ given by (10) can be rewritten, for 
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The no-slip condition on the wall is specified and the boundary condition at infinity for 
the oscillating flow is, 

Only real values are physically significant. 

a cylinder can be represented as 

where & and $ are the unsteady and steady components of the stream function, 
respectively, and they are both order one quantities. The steady component is a 
consequence of the purely oscillating flow setting up a steady streaming motion 
resulting from the nonlinearity of the governing equation. The important feature of 
(A 3) is that the steady component is scaled as Sf-'. An examination of (A 1) shows 
that (A 4) is also valid for a high-frequency oscillating flow over a sphere. Defining 

++$r2((1 -,u2)e-if as r - t  cc. (A 3 )  

Wang (1968) has shown that the stream function + for a high-frequency flow over 

+ = $ + st-l$ (A 4) 

6 = St-f <. 1, a = Re'-', (A 5 )  
where a is a constant of order unity, and recalling that g = D2$, (A 1) becomes 

where the subscripts u and s denote the unsteady and steady parts of the nonlinear 
term. Equations (A 6)-(A 7) constitute the basis for an asymptotic expansion. 

Starting from the outer region of r -  1 - 0(1), the outer solutions for g and $ can 
be expressed as 

G = G,+ SG, + S2G,+ S3G, + 64G,+. . . , 
Y = Y" +SY, +S?P2 f . .  . , 

(A 8) 
(A 9) 

(A 6) and (A 8)-(A 9) give, w w z L G = G  = G  = G  = O ,  
0 1  2 3  

The steady component of g is governed by 

which implies that the equations governing Y, and Fm are D," Y, = 0 for m = 0 and 
1, and D2!Fm = 0 for m = 0, 1, 2 and 3. Stretching the coordinate near the wall, 

(A 14) 7 = ( r -  1)/S&, 
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and expressing the inner solution in the form of 

$b = &hn + S2& + S3& + . . . , 
the following equations are obtained, 

Solving and matching the solutions in the following order, 

!Pn --f &n + !F1 --f G1 + !F2 + q2], &n + (3, and &22) + (!Fn and F3), 
where $21 and $22 are the 0(S3) term in (A 15) and are associated with the single and 
double harmonics e-it and e-i2t, respectively, the solutions to various orders in inner 
and outer regions are readily obtained - 

(A 20) 
(A 21) 
(A 22) 
(A 23) 
(A 24) 
(A 25) 

Y,, = :(y2 - r-l)(l -p*) e-it, 
3 0 - 3 1  - 2az(1-p2)e-it[7+[(1 +i)/2/2](E-l)], - 
y1 = - $(201):( 1 + i) [( 1 - p 2 ) / r ]  ecit, 

- = $a(1 +i)(1-p2>e-it[[?j,+[(1 + i ) /2 /21 (~-  111, 

JZl = 3ag(1 -p2)e-it[--i 27 E+iq3-+2/2(l +i)p2+;i7), 

-i3 - 201 [(l - p 2 ) / r ]  ecit, 

+ 5 ~ / 2  exp ( - 5 ) c o s  (5) + 3 2//2 exp (-2) sin (L) +gy -?2/2], (A 27) 
d 2  d2 

where E = exp(-[(l-i)/d217), (A 30) 
and 1 -p2  = sin2 8. The solutions given by (A 20)-(A 29) have the following physical 
interpretation, that is not obvious from the unsteady Stokes solution. The outer 
solution Fn is a potential flow oscillating around the sphere driven by the free-stream 
condition and gn describes the boundary-layer flow driven by the outer potential flow 
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@(,. The O( 1) term at large ti in J , ,  reflects the viscous displacement effect that results 
in which is an oscillating doublet in the outer region. This doublet in turn induces 
a second-order boundary-layer flow, $,, in the inner region. The O(1) term in $,?t 
large 4 again is the viscous displacement effect that induces a second-order doublet $$. 
The solution accounts for the curvature effect, as indicated by the first term on the 
right-hand side of (A IS), on O(P) level. The other O(S") terms, &22 and $(,, are the 
consequences of the nonlinearity. Since Ji1 has no O( 1) term at largeg, there is no 
term associated with the first harmonic in the outer region and Y3, an oscillating 
quadruple, is caused by the viscous displacement effects in &22. The steady outer 
solution Po does not decay at infinity and its presence can be easily visualized in the 
experiments investigating the steady streaming. 

The function g, defined by (16h) can be evaluated from (A 21), (A 23), and (A 25) 
since g ,  is zero in the outer region. It is given by 

(A 31) 

which is D2& associated with the fundamental mode. 
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